Abstract
BackgroundPsoriasis is an inflammatory disease mediated by helper T (Th)17 and Th1 cells. MicroRNA-125a (miR-125a) is reduced in the lesional skin of psoriatic patients. However, the mechanism by which miR-125a participates in psoriasis remains unclear.MethodsThe levels of miR-125a-5p and its downstream targets (ETS-1, IFN-γ, and STAT3) were detected in CD4+ T cells of healthy controls and psoriatic patients by quantitative real-time PCR (qRT-PCR). In vitro, transfection of miR-125a-5p mimics was used to analyze the effect of miR-125a-5p on the differentiation of Th17 cells by flow cytometry. Imiquimod (IMQ)-induced mouse model was used to evaluate the role of upregulating miR-125a-5p by intradermal injection of agomir-125a-5p in vivo.ResultsmiR-125a-5p was downregulated in peripheral blood CD4+ T cells of psoriatic patients, which was positively associated with the proportion of regulatory T cells (Tregs) and negatively correlated with the Psoriasis Area and Severity Index (PASI) score. Moreover, the miR-125a-5p mimics promoted the differentiation of Tregs and downregulated the messenger RNA (mRNA) levels of ETS-1, IFN-γ, and STAT3 in murine CD4+ T cells. Furthermore, agomir-125a-5p alleviated psoriasis-like inflammation in an IMQ-induced mouse model by downregulating the proportion of Th17 cells.ConclusionsmiR-125a-5p may have therapeutic potential in psoriasis by restoring the suppressive function of Tregs on Th17 cells through targeting STAT3, and on Th1 cells indirectly through targeting ETS-1 and IFN-γ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.