Abstract

Hypertension is the leading risk factor for cardiovascular disorders. This study aimed to explore roles of microRNA (miR)-122-5p in hypertension. Angiotensin II (Ang II; 1.5 mg/kg/day) with an osmotic minipump was used to induce hypertensive rats pretreated by rAAV-miR-122-5p or rAAV-GFP, respectively. Notably, Ang II infusion caused marked increases in myocardial fibrosis, inflammation, oncosis, and oxidant injury in rats, which were aggravated by rAAV-miR-122-5p. RAAV-miR-122-5p exacerbated Ang II–mediated cardiac dysfunction and structural injury in hypertensive rats, with downregulated levels of apelin, elabela, ACE2, and GDF15, as well as upregulated expression of porimin and CTGF. In cultured rat cardiac fibroblasts, Ang II contributed to augmentation of cellular oncosis, migration, inflammation, and oxidative stress, with reduction of apelin, elabela, ACE2, and GDF15 levels, which were rescued by miR-122 inhibitor. In summary, miR-122-5p exacerbates myocardial fibrosis and dysfunction in hypertensive rats by modulating the elabela/apelin-ACE2-GDF15 signaling. MiR-122-5p has potential therapeutic significance for hypertension and hypertensive cardiac injury.Graphical abstract Supplementary InformationThe online version contains supplementary material available at 10.1007/s12265-022-10214-3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.