Abstract

This study aims to investigate the function and mechanism of microRNA-106b-5p (miR-106b-5p) in cervical cancer (CC). Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to determine miR-106b-5p expression in CC tissues and normal gastric tissues. Cell counting kit-8 (CCK-8) and colony formation assays were used to analyze the regulatory effects of miR-106b-5p on CC cells' proliferative ability. Wound healing and Transwell assays were conducted to detect the effects of miR-106b-5p on cell migration and invasion. Besides, TargetScan was used to predict the potential target genes of miR-106b-5p. The interaction between miR-106b-5p and fibroblast growth factor 4 (FGF4) was proved by qRT-PCR, Western blot, and dual-luciferase reporter gene assay. MiR-106b-5p expression was down-regulated in CC tissues compared to non-tumorous tissues. The expression of miR-106b-5p was associated with the lymphatic node metastasis, FIGO stage and differentiation of CC. Functional assays revealed that miR-106b-5p overexpression suppressed CC cell proliferation, migration and invasion while miR-106b-5p inhibitor had the opposite effects. In addition, FGF4 was identified as a target gene of miR-106b-5p, and FGF could be negatively regulated by miR-106b-5p. MiR-106b-5p may serve as a tumor suppressor in CC, which can inhibit CC growth and metastasis by down-regulating FGF4 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.