Abstract

Many of the diverse material properties of soft materials (polymer solutions, gels, filamentous proteins in cells, etc.) stem from their complex structures and dynamics with multiple characteristic length and time scales. A wide variety of technologies, from paints to foods, from oil recovery to processing of plastics, all heavily rely on the understanding of how complex fluids flow (Larson, 1999). Rheological measurements on complex materials reveal viscoelastic responses which depend on the time scale at which the sample is probed. In order to characterize the rheological response one usually measures the shear or the Young modulus as a function of frequency by applying a small oscillatory strain of frequency ω. Typically, commercial rheometers probe frequencies up to tens of Hz, the upper range being limited by the onset of inertial effects, when the oscillatory strain wave decays appreciably before propagating throughout the entire sample. If the strain amplitude is small, the structure is not significantly deformed and the material remains in equilibrium; in this case the affine deformation of the material controls the measured stress, and the time-dependent stress is linearly proportional to the strain (Riande et al., 2000). Even though standard rheological measurements have been very useful in characterizing soft materials and complex fluids (e.g. colloidal suspensions, polymer solutions and gels, emulsions, and surfactant solutions), they are not always well suited for all systems because milliliter samples are needed thus precluding the study of rare or precious materials, including many biological samples that are difficult to obtain in large quantities. Moreover, conventional rheometers provide an average measurement of the bulk response, and do not allow for local measurements in inhomogeneous systems. To address these issues, a new methodology, microrheology, has emerged that allows to probe the material response on micrometer length scales with microliter sample volumes. Microrheology does not correspond to a specific experimental technique, but rather a number of approaches that attempt to overcome some limitations of traditional bulk rheology (Squires & Mason, 2010; Wilson & Poon, 2011). Advantages over macrorheology include a significantly higher range of frequencies available without time-temperature superposition (Riande et al., 2000), the capability of measuring material inhomogeneities that are inaccessible to macrorheological methods, and rapid thermal and chemical homogeneization that allow the transient rheology of evolving systems to be studied (Ou-Yang & Wei, 2010). Microrheology methods typically use embedded micron-sized probes to locally deform the sample, thus allowing one to use this type of rheology on very small volumes, of the order of a microliter. Macro-

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.