Abstract
We investigate active particle-tracking microrheology in a colloidal dispersion by Brownian dynamics simulations. A probe particle is dragged through the dispersion with an externally imposed force in order to access the nonlinear viscoelastic response of the medium. The probe’s motion is governed by a balance between the external force and the entropic “reactive” force of the dispersion resulting from the microstructural deformation. A “microviscosity” is defined by appealing to the Stokes drag on the probe and serves as a measure of the viscoelastic response. This microviscosity is a function of the Peclet number (Pe=Fa∕kT)—the ratio of “driven” (F) to diffusive (kT∕a) transport—as well as of the volume fraction of the force-free bath particles making up the colloidal dispersion. At low Pe—in the passive microrheology regime—the microviscosity can be directly related to the long-time self-diffusivity of the probe. As Pe increases, the microviscosity “force-thins” until another Newtonian plateau is reached at large Pe. Microviscosities for all Peclet numbers and volume fractions can be collapsed onto a single curve through a simple volume fraction scaling and equate well to predictions from dilute microrheology theory. The microviscosity is shown to compare well with traditional macrorheology results (theory and simulations).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.