Abstract
The jamming transition is a nonequilibrium critical phenomenon, which governs characteristic mechanical properties of jammed soft materials, such as pastes, emulsions, and granular matters. Both experiments and theory of jammed soft materials have revealed that the complex modulus measured by conventional macrorheology exhibits a characteristic frequency dependence. Microrheology is a new type of method to obtain the complex modulus, which transforms the microscopic motion of probes to the complex modulus through the generalized Stokes relation (GSR). Although microrheology has been applied to jammed soft materials, its theoretical understanding is limited. In particular, the validity of the GSR near the jamming transition is far from obvious since there is a diverging length scale lc, which characterizes the heterogeneous response of jammed particles. Here, we study the microrheology of jammed particles by theory and numerical simulation. First, we develop a linear response formalism to calculate the response function of the probe particle, which is transformed to the complex modulus via the GSR. Then, we apply our formalism to a numerical model of jammed particles and find that the storage and loss modulus follow characteristic scaling laws near the jamming transition. Importantly, the observed scaling law coincides with that in macrorheology, which indicates that the GSR holds even near the jamming transition. We rationalize this equivalence by asymptotic analysis of the obtained formalism and numerical analysis on the displacement field of jammed particles under a local perturbation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Soft matter
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.