Abstract

We have studied superconducting coplanar-waveguide (CPW) resonators fabricated from disordered (granular) films of Aluminum. Very high kinetic inductance of these films, inherent to disordered materials, allows us to implement ultra-short (200 $\mu$m at a 5GHz resonance frequency) and high-impedance (up to 5 k$\Omega$) half-wavelength resonators. We have shown that the intrinsic losses in these resonators at temperatures $\lesssim 250$ mK are limited by resonator coupling to two-level systems in the environment. The demonstrated internal quality factors are comparable with those for CPW resonators made of conventional superconductors. High kinetic inductance and well-understood losses make these disordered Aluminum resonators promising for a wide range of microwave applications which include kinetic inductance photon detectors and superconducting quantum circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.