Abstract
A recent direction in skin disease classification is to develop quantitative diagnostic techniques. Skin relief, colloquially known as roughness, is an important clinical feature. The aim of this study is to demonstrate a novel polarization speckle technique to quantitatively measure roughness on skin lesions in vivo. We then calculate the average roughness of different types of skin lesions to determine the extent to which polarization speckle roughness measurements can be used to identify skin cancer. The experimental conditions were set to target the fine relief structure on the order of ten microns within a small field of view of 3 mm. The device was tested in a clinical study on patients with malignant and benign skin lesions that resemble cancer. The cancer group includes 37 malignant melanomas (MM), 43 basal cell carcinomas (BCC), and 26 squamous cell carcinomas (SCC), all categories confirmed by gold standard biopsy. The benign group includes 109 seborrheic keratoses (SK), 79 nevi, and 11 actinic keratoses (AK). Normal skin roughness was obtained for the same patients (301 different body sites proximal to the lesion). The average root mean squared (rms) roughness ± standard error of the mean for MM and nevus was equal to 19 ± 5 μm and 21 ± 3 μm, respectively. Normal skin has rms roughness of 31 ± 3 μm, other lesions have roughness of 35 ± 10 μm (AK), 35 ± 7 μm (SCC), 31 ± 4 μm (SK), and 30 ± 5 μm (BCC). An independent-samples Kruskal-Wallis test indicates that MM and nevus can be separated from each of the tested types of lesions, except each other. These results quantify clinical knowledge of lesion roughness and could be useful for optical cancer detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Photodermatology, Photoimmunology & Photomedicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.