Abstract

Researches of irradiation effects on silicon possess not only fundamental interests but also potential application prospects. Comparison studies about structural modification of silicon materials with different structures under identical irradiation conditions can reveal the irradiation mechanisms for amorphous and crystalline phases of silicon. For this purpose, amorphous silicon (a-Si) and nano-crystalline silicon (nc-Si) films as well as mono-crystalline silicon (c-Si) samples were irradiated with 6.0MeV Bi-ions at room temperature. The ion fluences are 1.0×1013, 5.0×1013 and 1.0×1014ions/cm2. All samples were analyzed by using a Raman spectrometer. The obtained results show that the crystalline fraction of c-Si and nc-Si decrease with increasing fluence, which indicates that the irradiation induces the amorphization of nc-Si and c-Si samples. In addition, the variation in Raman frequency of crystalline peak after irradiation reveals that the irradiation also results in the increased stress in crystalline phase of c-Si and nc-Si samples. As the fluence increases, the bond angle deviation and the ratio of TA to TO mode of amorphous network of a-Si and nc-Si films initially increase and then decrease by a diminishing degree, while the bond angle deviation and the ratio of TA to TO mode of amorphous network of c-Si samples increase continuously. This gives the dependence of short-range structural order of amorphous network of a-Si, nc-Si and c-Si samples on the ion fluence, which is related with the irradiation induced variation of local free energy. It is considered that the irradiation induced structural modification of silicon samples is mainly attributed to the nuclear energy loss. The irradiation effects of energetic heavy-ions on crystalline and amorphous phases of silicon have been discussed, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call