Abstract

Withania coagulans (Stocks) Dunal (Solanaceae), popularly called vegetable rennet, is a critically endangered and highly valued medicinal plant. Overexploitation and reproductive failure forced the plant species toward the verge of complete extinction. We describe here the development of a simple, rapid, and cost effective in vitro micropropagation system for W. coagulans for mass-scale production of true-to-type plantlets using nodal shoot segments. Exactly 95.5 ± 0.34% explants responded within 8–10 days (d) and produced multiple shoot buds (4.1 ± 0.10 shoots of 2.95 ± 0.15 cm length) on 0.8% agar-gelled Murashige and Skoog's (MS) basal medium supplemented with 8.88 μM 6-benzylaminopurine (BAP), 0.57 μM indole-3-acetic acid (IAA), and additives (100 mg L−1 L-ascorbic acid, 25 mg L−1 each citric acid, adenine sulphate, and L-arginine). The shoots in cultures were multiplied by repeated transfer on MS medium with 4.44 μM BAP, 0.57 μM IAA, and additives. Further cultures were multiplied on a large-scale through the subculturing of shoot clumps differentiated in vitro, on MS medium supplemented with 1.11 μM BAP, 0.57 μM IAA, and additives. Maximum number (19.1 ± 0.28) of healthy (6.15 ± 0.25 cm) and viable shoots differentiated on this medium. The microshoots were rooted both in vitro and ex vitro. Exactly 67.3 ± 1.01% microshoots rooted in vitro within 25–30 d on agar-gelled half-strength MS salts supplemented with 29.52 μM indole-3-butyric acid (IBA) and 200 mg L−1 of activated charcoal (AC). Alternatively, 73.8 ± 0.65% cloned shoots rooted on sterile soilrite (soilless compost and soil conditioner) under ex vitro conditions after pulse treatment with 2.46 mM IBA for 300 s. The clones of W. coagulans were hardened in a greenhouse within 40–45 d by slow and gradual exposure of plantlets from high relative humidity (RH; 70–80%) and low (26 ± 2°C) temperature to low RH (40–50%) and high (34 ± 2°C) temperature. The hardened plantlets were transferred to soil and stored in agro-net house with more than 90% survival rate. Replacement of pure and laboratory grade sucrose with commercial grade sugar, use of less expensive commercial grade agar-agar in culture medium, higher rate of shoot proliferation, single step ex vitro rooting, and hardening of plantlets in the greenhouse are advantageous features of the protocol. The micropropagation protocol defined here is reproducible, easy to follow, and would be helpful in large-scale restoration programs through true-to-type mass-multiplication of W. coagulans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call