Abstract

A microprocessor-based speed control scheme for a separately excited DC motor fed from a DC source, which incorporates both armature-voltage control and spillover field weakening to provide smooth and precise control from standstill to speeds well above the base value, is described. Armature-current limitation during transient operation is achieved using an interventionist system external to the microprocessor controller, thereby simplifying considerably the overall system design. Experimental results obtained from a prototype 5 kW drive are presented to illustrate the excellent dynamic behavior of the scheme. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.