Abstract
Seaport container terminals are essential nodes in sea cargo transportation networks. As such, the operational efficiency of container terminals in handling containers passing through them plays a critical role in a globalized world economy. Many models and algorithms have been developed to address various decision problems in container terminals to help improve operational efficiency. These decision support tools are usually used separately for specific purposes. However, the problems they are trying to tackle are often interrelated. Therefore, in this regard, an evaluation tool which can capture as many operational conditions as possible for different decision problems is necessary. This paper introduces a general simulation platform, named MicroPort, which aims to provide an integrated and flexible modeling system for evaluating the operational capability and efficiency of different designs of seaport container terminals. The software structure of MicroPort comprises three programming layers: (1) the Functions layer; (2) the Applications layer; and (3) the Extensions layer. Different layers are bound by Application Programming Interfaces (APIs). Basic functions built in the Functions layer support the Applications layer in which major operation processes can be modeled by an agent-based method. External modules and decision support tools in the Extensions layer then use APIs to adjust the system to produce suitable simulation models for specific purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.