Abstract

Despite the rapid development of versatile metal-organic frameworks (MOFs), the synthesis of water-stable MOFs remains challenging, which significantly limits their practical applications. Herein, a novel engineering strategy was developed to prepare superhydrophobic MOFs by an in situ fluorinated microporous organic network (FMON) coating. Through controllable modification, the resulting MOF@FMON retained the porosity and crystallinity of the pristine MOFs. Owing to the superhydrophobicity of the FMON and the feasibility of MOF synthesis, the FMON coating could be in situ integrated with various water-sensitive MOFs to provide superhydrophobicity. The coating thickness and hydrophobicity of the MOF@FMON composites were easily regulated by changing the FMON monomer concentration. The MOF@FMON composites exhibited excellent oil/water separation and catalytic activities and enhanced durability in aqueous solutions. This study provides a general approach for the synthesis of superhydrophobic MOFs, expanding the application scope of MOFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.