Abstract

Three different microporous niobia–silica gas separation membranes with an exceptionally low permeability for CO 2 were prepared and their permeabilities for different gases were compared. The Nb:Si molar ratios of the sols varied between 0.33 and 0.8, and the radii of gyration varied between 2.4 and 3.2 nm, respectively. All three sols showed narrow particle size distributions, and no particles with hydrodynamic diameters above 60 nm were detected. The hydrogen and helium permeabilities of membranes could be correlated with the degree of structural evolution of the sols. The structurally least developed sol yielded more resistive membrane films. The increase in the loading of Nb 5+ ions in the silica framework led to an increase of the H 2/CO 2 separation factor from ∼40 to 70, but also caused densification of the material, leading to a much more resistive network. Single gas permeation measurements showed a preferential permeability towards helium at 200 °C for all the membranes. X-ray photoelectron spectroscopy analysis of a niobia–silica thin film showed that it had a homogeneous distribution of Si and Nb atoms, and that this material exhibited a different interaction with CO 2 than pure silica and pure niobia surfaces do.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.