Abstract

Membranes tailored for selective ion transport represent a promising avenue toward enhancing sustainability across various fields including water treatment, resource recovery, and energy conversion and storage. While nanochannels formed by polymers of intrinsic microporosity (PIM) offer a compelling solution with their uniform and durable nanometer-sized pores, their effectiveness is hindered by limited interactions between ions and nanochannel. Herein, we introduce the randomly twisted V-shaped structure of Tröger’s Base unit and quaternary ammonium groups to construct ionized sub-nanochannel with a window size of 5.89–6.54 Å between anion hydration and Stokes diameter, which enhanced the dehydrated monovalent ion transport. Combining the size sieving and electrostatic interaction effects, sub-nanochannel membranes achieved exceptional ion selectivity of 106 for Cl-/CO32- and 82 for Cl-/SO42-, significantly surpassing the state-of-the-art membranes. This work provides an efficient template for creating functionalized sub-nanometer channels in PIM membranes, and paves the way for the development of precise ion separation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.