Abstract

A pure fluorinated aluminophosphate [Al8P8O32F4·(C3H12N2)2(H2O)2] (ULM-6) has been synthesized via an aminothermal strategy, in which triisopropanolamine (TIPA) is used as the solvent together with the addition of propyleneurea and HF. The 13C NMR spectrum demonstrates that 1,3-diaminopropane, the in situ decomposer of propyleneurea, is the real structure-directing agent (SDA) for ULM-6 crystals. The local Al, P, and F environments of the dehydrated ULM-6 are investigated by 1D and 2D solid-state NMR spectroscopy. The spatial proximities are extracted from 19F{27Al}, 19F{31P}, 27Al{19F}, and 31P{19F} rotational-echo double resonance (REDOR) NMR experiments as well as 19F → 31P heteronuclear correlation (HETCOR) NMR and {31P}27Al HMQC NMR experiments, allowing a full assignment of all the 19F, 27Al, and 31P resonances to the corresponding crystallographic sites. Moreover, it is found that the structure of ULM-6 is closely related to that of AlPO4-14. A combination of high-temperature powder XRD, thermal an...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.