Abstract

In the present paper, the researcher investigates the mutual impact of radiative heat and mass exchange on hydromagnetic micropolar fluid moving along an infinite vertical surface in a porous regime. The goal of the research is to investigate the impact of convective temperature and mass flow on hydromagnetic motion of micropolar fluid across a vertical plate ingrained in a porous regime. The conservation equations with appropriate boundary conditions are resolved analytically by assuming a convergent series solution and thus obtained the analytical solutions for velocity, angular velocity (microrotation), temperature and molar-concentration. The novelty of the current work is that it takes heat transfer into account while considering for the impacts of chemical reaction in a micropolar fluid flow of reactive diffusing species. The influence of different physical variables on temperature, molar-concentration, velocity and angular velocity of the fluid molecules have been presented graphically for dual solutions. It is seen that the micropolar parameter and porosity of the medium play a significant behaviour over the momentum and thermal boundary layers. This investigation may involve with various disciplines of chemical engineering, bio-mechanics and medical sciences. The outcomes of the present study have significant applications in MHD generators and geothermal resource extraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call