Abstract

In this paper, the laminar boundary layer flow of an electrically conducting micropolar fluid about a spinning cone with Hall current, Ohmic heating, and power-law variation in surface temperature is studied analytically. The governing equations are transformed into a dimensionless system of four nonlinear coupled partial differential equations. These equations have been solved analytically subject to the relevant boundary conditions by employing homotopy analysis method. The convergence of the obtained series solutions is carefully checked. Graphical results are presented to investigate the influence of the magnetic parameter, the Hall parameter, and the Eckert number on the axial velocity, the tangential velocity, the microrotation, and the temperature. For near the cone surface, the magnitude of microrotation velocity increases for free convection regime and decreases for forced convection regime as magnetic parameter increases, but the behavior is completely reversed as one moves away from the cone surface. Besides, in the immediate vicinity of the cone, the effect of increasing the Hall parameter is to increase very slightly the magnitude of microrotation velocity for free convection regime, while the magnitude of microrotation velocity decreases for forced convection regime as the Hall parameter increases, but the converse is apparent as one moves toward the edge of the boundary layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.