Abstract

Abstract This research investigates the flow of micropolar fluid and heat transfer through a permeable channel using the successive linearization method (SLM). The study considers parameters such as coupling, spin-gradient viscosity, and micro-inertia density. The partial differential equations involved are transformed into a system of ordinary differential equations using similarity variables. The resulting nonlinear equations are solved using the SLM technique, and their accuracy and computational efficiency are validated through comparative analysis with previous results. The study shows that increasing the parameters of coupling and spin-gradient viscosity has a positive impact on fluid flow, microrotation, heat transfer, and mass transport, as demonstrated by the increased dimensionless profiles. Conversely, an increase in the micro-inertia density parameter leads to a reduction in these profiles. This decrease can be attributed to the increase in the micro-inertia effect of fluid flow and heat transfer, resulting in a decrease in convection and a change in the flow pattern in the channel. Additionally, higher Reynolds numbers are associated with decreases in velocity, microrotation, temperature, and concentration distribution. This implies a reduction in fluid flow intensity, weaker heat transfer, and decreased mass transport. However, an increased Peclet number results in increased fluid temperature and concentration profiles, indicating enhanced thermal convection and mass transport. These findings have significant implications for applications involving micropolar fluids, such as lubrication systems, blood flow, microchannels, and filtration systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call