Abstract

AbstractThis paper presents an analysis of the entropy generated in thermofluidic configuration involving micropolar couple stress fluid flow inside a Forchheimer channel. The channel is composed of a porous medium trapped between two parallel permeable plates separated by distance H through which the fluid can be sucked out/injected in. One of the plate bears a constant temperature and other is subjected to a uniform heat flux. A Cartesian coordinate system is chosen to model the flow configuration. The nondimensional nonlinear governing equations are solved by the differential transform method and Runge–Kutta–Fehlberg method to ascertain the accuracy of the results. Both the methods do match to the order of 10−6 for the quantities velocity, microrotation, and temperature. These quantities and their gradients are required to the compute entropy generation number. The effects of the parameters on entropy generation and Bejan number are discussed through various plots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.