Abstract

This paper builds on the recently begun extension of continuum thermomechanics to fractal media which are specified by a fractional mass scaling law of the resolution length scale R. The focus is on pre-fractal media (i.e., those with lower and upper cut-offs) through a technique based on a dimensional regularization, in which the fractal dimension D is also the order of fractional integrals employed to state global balance laws. In effect, the governing equations are cast in forms involving conventional (integer-order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order but containing coefficients involving D and R, as well as a surface fractal dimension d. While the original formulation was based on a Riesz measure—and thus more suited to isotropic media—the new model is based on a product measure capable of describing local material anisotropy. This measure allows one to grasp the anisotropy of fractal dimensions on a mesoscale and the ensuing lack of symmetry of the Cauchy stress. This naturally leads to micropolar continuum mechanics of fractal media. Thereafter, the reciprocity, uniqueness and variational theorems are established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.