Abstract
Sludge from wastewater treatment plants (WWTPs) is considered to be reservoirs of antibiotic resistance genes (ARGs), which can be efficiently removed by sludge treatment processes, e.g., aerobic sludge digestion. However, recent studies report microplastics, which also accumulate in sludge, may serve as carriers for ARGs. In the presence of microplastics, whether ARGs can still be efficiently destroyed by aerobic sludge digestion remains to be urgently investigated. In this study, the fate of ARGs during aerobic digestion was investigated with and without the addition of three prevalent categories of (i.e., polyvinyl chloride (PVC), polyethylene (PE), and polyethylene terephthalate (PET)). Nine ARGs and class 1 integron-integrase gene (intI1) that represents the horizontal transfer potential of ARGs were tested in this study. Compared with the control, the ARGs removal efficiency decreased by 129.6%, 137.0%, and 227.6% with the presence of PVC, PE, and PET, respectively, although a negligible difference was observed with their solids reduction efficiencies. The abundance of potential bacterial hosts of ARGs and intI1 increased in the reactors with the addition of microplastics, suggesting that microplastics potentially selectively enriched bacterial hosts and promoted the horizontal transfer of ARGs during aerobic sludge digestion. These may have contributed to the deteriorated ARGs removal efficiency. This study demonstrated that microplastics in sludge would decrease the ARGs removal efficiency in aerobic digestion process, potentially leading to more ARGs entering the local environment during sludge disposal or utilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.