Abstract

Microplastic pollution has emerged as a significant environmental concern, with potential direct and indirect impacts on ecosystems. Microplastics are pervasive, found in water, food, and even the air we breathe. While their influence on human health is still unclear, microplastics are known to possess endocrine-disrupting properties and can accumulate persistent organic pollutants. Accurate measurement and categorization of microplastics are crucial to understanding their prevalence and impact on contamination. Fortunately, there are several methods available, such as visual analysis, fluorescence techniques, vibrational spectroscopy, and electron microscopy, that offer optimal accuracy in detecting and quantifying microplastics. The increasing presence of microplastics in the food chain has prompted global research efforts to assess potential risks to human health. However, despite ongoing advancements, challenges remain in standardizing analytical procedures and developing methods capable of detecting microplastics as small as nanometers. Visual classification-based methods, though limited in detecting smaller microplastics, show promise for improvement through integration with advanced technologies. This study primarily focuses on microplastic sampling strategies, detection methods, and their respective advantages and disadvantages, shedding light on the advancements and challenges in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.