Abstract

As microplastics (MPs) are organic polymers with a carbon-based framework, they may affect nutrient cycling. Information regarding how MPs influence N, P, and C cycling and the underlying driving force remains lacking. N, P, and C cycling induced by soil hydraulic properties under MPs exposure (including polyethylene (PE), polyvinyl chloride (PVC), polystyrene (PS), polypropylene (PP)) in the natural environment were investigated in this study. MPs exposure increased the soil water content (11.2–84.5%) and reduced bulk density (11.4–42.8%); soil saturated hydraulic conductivity increased by 7.3–69.4% under PP and PE exposure. MPs exposure led to increases in available phosphorus, NO3--N, NH4+-N, and soil organic matter; the bacterial communities related to N and C cycling were significantly changed. Expression levels of soil N and C cycling-related genes were enhanced under low concentrations (0.5% and 2%) of MPs, except PVC; consequently, soil nitrogen storage and organic carbon storage increased by 12–75% and 6.7–93%, respectively. Correlation analyses among soil hydraulic properties, bacterial communities, and functional genes related to nutrient cycling revealed that soil hydraulic properties (including soil water content, saturated water capacity, and soil saturated hydraulic conductivity) were the dominant factors affecting soil N and C storage under MPs exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.