Abstract
Microplastics (MPs) pollution is considered as a globally pervasive threat to aquatic ecosystems and many studies reported this pollution in different aquatic ecosystems. However, studies on MPs pollution in wetlands are still scarce. Therefore, the aim of present study was to investigate the presence of MPs in the surface water, sediment and different fish species of Amir-Kalayeh wetland, Northern Ian. Surface water and sediment samples were collected from six stations during June to July 2022. Moreover, the gills and gastrointestinal tract (GIT) of 54 fish specimens belonging to four species including Cyprinus carpio, Tinca tinca, Esox lucius and Silurus glanis were analysed. MPs were detected in all samples with an average of 2.15 ± 1.98 items/m3 for surface water, 51.66 ± 32.20 items/kg dry weight for sediments, 0.17 ± 0.17 items/individual for fish GIT and 0.12 ± 0.12 items/individual for fish gills. There was no significant relationship between MPs abundance in surface waters and sediments as well as between MPs abundance in environmental matrices and fish (P > 0.0.5). In terms of feeding habit, no significant differences were observed between the number of MPs found in omnivorous and carnivorous fish species (P > 0.05). Moreover, no significant relationship was detected between the MPs abundance in fish tissues and body size (P > 0.05). MPs were mainly fibers, mostly transparent, and in a range size of 70-5000 µm. The dominant MPs type was nylon in all samples. This study will help increase our knowledge about MPs pollution in inland freshwater systems and suggests that management policies take essential steps to reduce this insidious problem in freshwater ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.