Abstract

Plastic mulch is frequently used to increase crop yield, resulting in large quantities of residues accumulating in soil due to low recovery rates. However, the effects of microplastic residues from traditional and biodegradable plastic films on soil nitrogen (N) transformation and bioavailability are not well understood. Here, the main objectives were to examine the effects of micro-sized residues (diameter <5mm) of polyethylene (PE) and biodegradable plastic mulch films (PLA) on the soil N in two contrasting soils (clay soil and sandy loam soil) in different temperatures (15°C vs. 25°C). Results showed that the microplastic presence showed a little effect on soil N transformation and bioavailability at 15°C, but both microplastics significantly decreased NO3-, mineral N (MN), total dissolved N (TDN), the net cumulative N nitrification (Nn), and the net cumulative N mineralization (Nm) at 25°C, indicating that microplastics decreased soil N bioavailability at elevated temperature. Meanwhile, the microplastics significantly reduced the temperature sensitivity (Q10) of N mineralization. The presence of microplastics changed the composition of soil mineral N with lower relative NO3- and higher NH4+ compared to the control in clay soil. The sandy loam soil was more susceptible to microplastic pollution compared to clay soil in N transformation, due to different textures and biochemistry properties in the two soils, which showed that microplastics have a significant soil heterogeneity-dependent effect on soil N processes. Therefore, the results underline that the effects of microplastic residues on soil N cycling can be partly linked to soil properties, suggesting the urgent need for further studies examining their impacts on soil nutrient cycling in different soil systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call