Abstract

Although microplastics are ubiquitous in today’s natural environments, our understanding of the materials, quantities, and particle sizes involved remains limited. The recovery of microplastics from different types of environmental matrices requires standardized matrix digestion protocols that allow inter-laboratory comparisons and that have no effect on the polymers themselves. A number of commonly used digestion methods rely on oxidation with concentrated hydrogen peroxide solutions to remove organic matter from the matrix. However, this can alter the nature of polymers through hydrolysis and often does not lead to a complete matrix removal. We have therefore investigated the use of two altered matrix digestion protocols, an acidic (Fenton) protocol and a new alkaline (Basic Piranha) protocol, focusing mainly on the effect on biodegradable polymers (polylactide, polybutylene adipate terephthalate, polybutylene succinate) and polymers with known degradation pathways via hydrolysis (thermoplastic polyurethanes, polyamide). Comparing the initial surface textures, chemical compositions, and particle size distributions with those obtained after digestion revealed that the Fenton protocol left most of the polymers unchanged. The ferrous residue that remains following Fenton digestion had no effect on either the polymer composition or the particle size distribution, but could disturb further analytics (e.g. Raman microscopy due to auto-fluorescence). While increasing the chance of complete matrix removal, the more powerful Basic Piranha protocol is also more likely to affect the polymer properties: Polylactide polymers in particular showed signs of degradation under alkaline digestion (reduced polylactide content, holes in the polymer matrix), indicating the unsuitability of the Basic Piranha protocol in this specific case. Polyamide, however, remained stable during the Basic Piranha treatment, and the surface chemistry, the particle size as well as the molar mass distribution of the investigated thermoplastic polyurethanes were also not affected. Hence, this protocol offers a powerful alternative for microplastic analysis with focus on particle size in more complex environmental matrices (e.g. removal of cellulose in soil), while avoiding ferrous Fenton residue. Unexpectedly, also tire rubber, a frequent target analyte in microplastic monitoring, was found to be susceptible to artefact structures by both oxidation protocols. In summary, controls for the specific combination of polymer and sample preparation protocol are highly recommended to select the most fitting protocol. Here selected suitable combinations are reported.

Highlights

  • The global production of plastics in 2018 reached 359 million tonnes [1] which sparks an increasing concern about microplastic pollution; regarding possible hazards and risks to the environment and to human health [2,3,4,5]

  • Sample preparation protocols are essential for the quantification and analysis of microplastics in natural environments, but often rely on harsh chemical treatments

  • Without considering the stability of microplastic particles before choosing a chemical reagent for their extraction it is impossible to know whether any micro- and nanostructures identified in the recovered microplastics were present in the original particles or induced by the sample treatment

Read more

Summary

Introduction

The global production of plastics in 2018 reached 359 million tonnes [1] which sparks an increasing concern about microplastic pollution; regarding possible hazards and risks to the environment and to human health [2,3,4,5]. The European Chemical Agency (ECHA) published a restriction proposal for microplastics deliberately added to consumer products in January 2019 [9]. These primary microplastics are already within the defined size range from the beginning of their lifecycle; secondary microplastics result from the fragmentation of macroplastics, but are not yet included in the proposed ECHA restriction [6, 10]. A possible derogation in the restriction is the use of biodegradable polymers to encourage the development and use of biodegradable alternatives [9, 11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call