Abstract

A total of 60 flathead grey mullets were examined for microplastic ingestion. Thirty wild mullets were captured from the eastern coast of Hong Kong and 30 captive mullets were obtained from fish farms. Microplastic ingestion was detected in 60% of the wild mullets, with an average of 4.3 plastic items per mullet, while only 16.7% of captive mullets were found to have ingested microplastics, with an average of 0.2 items per mullet. The results suggested that wild mullets have a higher risk of microplastic ingestion than their captive counterparts. The most common plastic items were fibres that were green in colour and small in size (<2 mm). Polypropylene was the most common polymer (42%), followed by polyethylene (25%). In addition, the abundance of microplastics was positively correlated with larger body size among the mullets.

Highlights

  • Plastic constitutes the largest portion of marine litter in the world, it was estimated that up to12.7 million tons of plastic debris enter the oceans every year [1]

  • A total of 129 plastic items were found in 18 wild fish samples, which suggested that 60% of the wild fish samples contained plastic items

  • The occurrence of microplastic ingestion found in this study approaches the upper bound among similar studies of fishes [44]

Read more

Summary

Introduction

Plastic constitutes the largest portion of marine litter in the world, it was estimated that up to12.7 million tons of plastic debris enter the oceans every year [1]. Primary microplastics refer to particles originally manufactured in a particular size for specific applications. They include pellets that were used to manufacture plastic products and microbeads that are used in cosmetic, personal cleansing, and household products [14]. These microplastics cannot be completely removed by wastewater plants and end up in the oceans [9,15,16]. The breakdown of larger plastic debris by photochemical, mechanical, and biological processes in the marine environment results in secondary microplastics [10]. As most plastics were designed to be non-biodegradable, they only break down into smaller sizes and exist in the natural environment for hundreds or even thousands of years [3]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.