Abstract

Microplastics (MPs) biofilms in drinking water and wastewater treatment plants (DWTPs and WWTPs) have gained increasing attention due to their potential to come into close contact with humans. This review examines the fate of pathogenic bacteria, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in MP biofilms and their impacts on operations in DWTPs and WWTPs, as well as the associated microbial risks for ecology and human health. The literature shows that pathogenic bacteria, ARBs, and ARGs with high resistance can persist on MP surfaces and may escape treatment plants, contaminating drinking and receiving water. Nine potential pathogens, ARB, and ARGs can be retained in DWTPs and sixteen in WWTPs. While MP biofilms can improve the removal of MPs themselves, as well as the associated heavy metals and antibiotic compounds, they can also induce biofouling, hinder the effectiveness of chlorination and ozonation, and cause the formation of disinfection by-products. Furthermore, the operation-resistant pathogenic bacteria, ARB, and ARGs on MPs may have adverse impacts on receiving ecosystems, as well as human health, including a range of human diseases, from skin infections to pneumonia and meningitis. Given the significant implications of MP biofilms for aquatic ecosystems and human health, further research is necessary on the disinfection resistance of microbial populations in MP biofilm. This study provides valuable insights into the comprehensive understanding of the changes of MP biofilms in water and wastewater treatment systems as well as their impacts on ecology and human health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call