Abstract
The objective of this study was to assess the ability of utilizing attenuated total reflection mid-infrared (ATR-MIR) spectroscopy in combination with machine learning techniques to classify the presence of different types of microplastics in artificially adulterated fish and seafood samples. Different polymers namely poly-vinyl chloride (PVC), polycarbonate (PC), polystyrene (PS), polypropylene (PP) and low (LDPE) and high-density polyethylene (HDPE) were mixed with homogenized fish and seafood samples. Homogenized samples were analyzed using MIR spectroscopy and classification models developed using machine learning algorithms such as partial least squares discriminant analysis (PLS-DA). The results of this study revealed that it was possible to identify between adulterated and non-adulterated samples as well as the different microplastic types added to the homogenized samples using ATR-MIR spectroscopy. This study confirmed the ability of combining machine learning methods with ATR-MIR spectroscopy to directly analyze microplastic adulteration in fleshy foods such as fish and seafood. This proof-of-concept study can be utilized and extended to monitor the presence of plastics either in a wide range of fleshy foods or along the entire food value chain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.