Abstract

BackgroundMassive phytoplankton blooms, like the recurrent Phaeocystis proliferation observed every year in the Eastern English Channel (EEC), have a significant influence on the overall planktonic community structure and their food web dynamics. As well as being an important area for local fisheries, the EEC is an ideal ecosystem for work on microbial diversity. This is because, although its environmental context is relatively complex, it is reasonably well understood due to several years of monitoring and morphological observations of its planktonic organisms. The objective of our study was to better understand the under-explored microbial eukaryotic diversity relative to the Phaeocystis bloom.Methodology and Principal FindingsThe community structure of microplankton (diatoms, haptophytes, ciliates and dinoflagellates) was studied through morphological observations and tag pyrosequencing. During the annual Phaeocystis spring bloom, the phytoplankton biomass increased by 34-fold, while the microzooplankton biomass showed a 4-fold increase, representing on average about 4.6% of the biomass of their phytoplankton prey. Tag pyrosequencing unveiled an extensive diversity of Gymnodiniaceae, with G. spirale and G. fusiformis representing the most abundant reads. An extended diversity of Phaeocystales, with partial 18S rDNA genes sequence identity as low as 85% was found, with taxa corresponding to P. globosa, but also to unknown Phaeocystaceae.ConclusionsMorphological analyses and pyrosequencing were generally in accordance with capturing frequency shifts of abundant taxa. Tag pyrosequencing allowed highlighting the maintenance of microplankton diversity during the Phaeocystis bloom and the increase of the taxa presenting low number of reads (minor taxa) along with the dominant ones in response to biotic and/or abiotic changing conditions. Although molecular approaches have enhanced our perception on diversity, it has come to light that the challenge of modelling and predicting ecological change requires the use of different complementary approaches, to link taxonomic data with the functional roles of microbes in biogeochemical cycles.

Highlights

  • Oceanic productivity, fishery yields and net marine sequestration of atmospheric greenhouse gases are all controlled by the structure and function of planktonic communities composed by tiny autotrophic and heterotrophic organisms [1,2]

  • Tag pyrosequencing allowed highlighting the maintenance of microplankton diversity during the Phaeocystis bloom and the increase of the taxa presenting low number of reads along with the dominant ones in response to biotic and/or abiotic changing conditions

  • Molecular approaches have enhanced our perception on diversity, it has come to light that the challenge of modelling and predicting ecological change requires the use of different complementary approaches, to link taxonomic data with the functional roles of microbes in biogeochemical cycles

Read more

Summary

Introduction

Fishery yields and net marine sequestration of atmospheric greenhouse gases are all controlled by the structure and function of planktonic communities composed by tiny autotrophic and heterotrophic organisms [1,2]. Diversity surveys have benefited from the development of high throughput sequencing technologies such as the pyrosequencing of the hypervariable small subunit ribosomal RNA (SSU rRNA) tag region. This method was successfully applied to investigate the communities composition of the North Atlantic deep sea vent [16], the Arctic Ocean [17], and in freshwater [18]. As well as being an important area for local fisheries, the EEC is an ideal ecosystem for work on microbial diversity This is because, its environmental context is relatively complex, it is reasonably well understood due to several years of monitoring and morphological observations of its planktonic organisms. The objective of our study was to better understand the under-explored microbial eukaryotic diversity relative to the Phaeocystis bloom

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call