Abstract

The Pacinian corpuscle (PC) is a cutaneous mechanoreceptor sensitive to high-frequency vibrations (20-1000Hz). The PC is of importance due to its integral role in somatosensation and the critical need to understand PC function for haptic feedback system development. Previous theoretical and computational studies have modeled the physiological response of the PC to sustained or vibrating mechanical stimuli, but they have used estimates of the receptor's mechanical properties, which remain largely unmeasured. In this study, we used micropipette aspiration (MPA) to determine an apparent Young's modulus for PCs isolated from a cadaveric human hand. MPA was applied in increments of 5mm H2O (49Pa), and the change in protrusion length of the PC into the pipette was recorded. The protrusion length vs. suction pressure data were used to calculate the apparent Young's modulus. Using 10 PCs with long-axis lengths of 2.99±0.41mm and short-axis lengths of 1.45±0.22mm, we calculated a Young's modulus of 1.40±0.86kPa. Our measurement is on the same order of magnitude as those approximated in previous models, which estimated the PC to be on the same order of magnitude as skin or isolated cells, so we recommend that a modulus in the kPa range be used in future studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.