Abstract

The high variability in subcutaneous bioavailability of protein therapeutics is poorly understood, contributing to critical delays in patient access to new therapies. Preclinical animal and in vitro models fail to provide a physiologically relevant testbed to parse potential contributors to human bioavailability, therefore new strategies are necessary. Here, we present a microphysiological model of the human hypodermal vasculature at the injection site to study the interactions of administered protein therapeutics within the microenvironment that influence subcutaneous bioavailability. Our model combines human dermal endothelial cells, fibroblasts, and adipocytes, self-assembled into three-dimensional, perfusable microvessels that express relevant extracellular matrix. We demonstrate the utility of the model for measurement of biophysical parameters within the hypodermal microenvironment that putatively impact protein kinetics and distribution at the injection site. We propose that microphysiological models of the subcutaneous space have applications in preclinical development of protein therapeutics intended for subcutaneous administration with optimal bioavailability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.