Abstract

Abstract Aerodynamic condensation is a result of intense adiabatic cooling in the airflow over aircraft wings and behind propeller blades. Out of cloud, condensation appears as a burstlike fog (jet aircraft during takeoff and landing, propellers) or as an iridescent trail visible from the ground behind the trailing edge of the wing (jet aircraft in subsonic cruise flight) consisting of a monodisperse population of ice particles that grow to sizes comparable to the wavelength of light in ambient humidities above ice saturation. In this paper, the authors focus on aerodynamic contrail ice particle formation processes over jet aircraft wings. A 2D compressible flow model is used to evaluate two likely processes considered for the initial ice particle formation: homogeneous droplet nucleation (HDN) followed by homogeneous ice nucleation (HIN) and condensational growth of ambient condensation nuclei followed by their homogenous freezing. The model shows that the more numerous HDN particles outcompete frozen solution droplets for water vapor in a 0.5–1-m layer directly above the wing surface and are the only ice particles that become visible. Experimentally verified temperature and relative humidity–dependent parameterizations of rates of homogeneous droplet nucleation, growth, and freezing indicate that visible aerodynamic contrails form between T = −20° and −50°C and RH ≥ 80%. By contrast, combustion contrails require temperatures below −38°C and ice-saturated conditions to persist. Therefore, aerodynamic and combustion contrails can be observed simultaneously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.