Abstract

AbstractThis paper completes a series of studies using a 2D hybrid Lagrangian–Eulerian model to investigate the effect of sea spray on the thermodynamics and microphysics of the hurricane mixed layer. The evolution of the mixed layer was simulated by mimicking the motion of an air volume (in a Lagrangian sense) toward a tropical cyclone eyewall along a background airflow. During the radial motion, sea surface temperature, pressure, background wind speed, sea spray production rate, and turbulence intensity were altered according to the available observations. Analysis of the interaction between the hurricane mixed layer and the upper layers in terms of entrainment heat and moisture fluxes gives a new insight into the role of sea spray in the thermodynamics and microphysics of the mixed layer. The evaporation of sea spray leads to an increase in the relative humidity by 10%–15% and to a decrease in temperature by about 1–1.5 K, as compared to cases where sea spray is excluded. Sea spray leads to formation of drizzling clouds with the cloud base at the height of about 250 m. Taking the sea spray effect into account provides a good agreement between the thermodynamics of a simulated mixed layer and the observation data.A parameterization of droplet mass and size distributions as functions of height and wind speed is proposed. The horizontally averaged size distributions are approximated by a sum of lognormal distributions. The moments of size distributions and other integral properties are parameterized as functions of 10-m wind speed by means of simple polynomial expressions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call