Abstract

Raindrop size distribution (RSD) characteristics over the South China Sea (SCS) are examined with onboard Parsivel disdrometer measurements collected during marine surveys from 2012 to 2016. The observed rainfall is divided into pre-monsoon, monsoon, and post-monsoon periods based on the different large-scale circumstances. In addition to disdrometer data, sounding observation, FY-2E satellite, SPRINTARS (Spectral Radiation-Transport Model for Aerosol Species), and NCEP reanalysis datasets are used to illustrate the dynamical and microphysical characteristics associated with the rainfall in different periods. Significant variations have been observed in respect of raindrops among the three periods. Intercomparison reveals that small drops (D < 1 mm) are prevalent during pre-monsoon precipitation, whereas medium drops (1–3 mm) are predominant in monsoon precipitation. Overall, the post-monsoon precipitation is characterized by the least concentration of raindrops among the three periods. But, several large raindrops could also occur due to severe convective precipitation events in this period. Classification of the precipitation into stratiform and convective regimes shows that the lg(Nw) value of convective rainfall is the largest (smallest) in the pre-monsoon (post-monsoon) period, whereas the Dm value is the smallest (largest) in the pre-monsoon (post-monsoon) period. An inversion relationship between the coefficient A and the exponential b of the Z—R relationships for precipitation during the three periods is found. Empirical relations between Dm and the radar reflectivity factors at Ku and Ka bands are also derived to improve the rainfall retrieval algorithms over the SCS. Furthermore, the possible causative mechanisms for the significant RSD variability in different periods are also discussed with respect to warm and cold rain processes, raindrop evaporation, convective activities, and other meteorological factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.