Abstract
Lattice theory of rigid rods is extended to describe the microphase separation behavior of a rod-coil diblock copolymer in solution. The free energy was formulated by inclusion of the energy terms arising from the core-corona interface between the rods and coils and the corona formed by the coils into the lattice model of rigid rods. The rod-coil diblock copolymer exhibits lyotropic mesophases with lamellar, cylindrical, and spherical structures when the copolymer concentration is above a critical value. The tendency of the rodlike blocks to form orientational order plays an important role in the formation of lyotropic phases. Influences of polymer-solvent interaction, surface free energy, and molecular architectures of the rod-coil diblock copolymer on the phase behaviors were studied, and phase diagrams were mapped accordingly. The theoretical results were compared with some existing experimental observations and a good agreement is shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.