Abstract

A microphase separation in solutions containing a polymer and a mixture of two solvents, one of which consists of amphiphilic molecules (surfactant), is considered theoretically in the weak-segregation regime. A surfactant molecule is described as a dimer consisting of hydrophobic and polar parts. The energy gain due to the orientation of surfactant molecules can lead to the appearance of non-homogeneities in the solution, where density fluctuations cause the orientational ordering of surfactant molecules. The difference in the interaction energies of hydrophobic and polar groups of a surfactant with solvent is considered as a main reason for orienting surfactant molecules. The free energy is calculated for various morphologies (lamellar, cylindrical hexagonal, spherical particles arranged at different cubic lattices). The phase diagrams are presented. With worsening the solvent quality, the transitions from disordered to a macro-separated state at low polymer and surfactant concentrations or to a body-centered-cubic, then hexagonal, and then lamellar structure at high polymer and surfactant concentrations are predicted. The amphiphilicity degree of surfactant molecules should exceed a certain critical value to make a microstructure formation possible. The period of the lamellar microstructure decreases with increasing the surfactant and polymer concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.