Abstract

A series of polyesterurethanes with differing block length and constant composition have been synthesized for rheological studies. Hard segments based on isophorone diisocyanate and 1,4-butanediol and soft segments based on polycaprolactone to ensure high thermal stability and to prevent high melting point crystallinity enabled long-duration rheological characterization at high temperatures. DSC and SAXS revealed that, at any fixed temperature above the polyester melting point, the degree of microphase separation increased with block length, with the shortest block lengths being almost single-phase. Temperature-resolved SAXS experiments demonstrated gradual microphase mixing of the microphase-separated materials as the temperature increased. In addition, the SAXS data for one material were shown to obey the predictions of the mean field theory, allowing a mean field estimate of the spinodal temperature to be calculated. Frequency sweep dynamic mechanical experiments show viscoelastic behavior characterist...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.