Abstract

To evaluate and compare the diagnostic performance of microperimetry (MP), visual field (VF) 10-2 and 24-2 tests, and spectral-domain optical coherence tomography (SD-OCT) in primary open-angle glaucoma (POAG). The study consisted of 35 POAG and 42 control eyes were enrolled in this prospective study. Eligible participants were ≥ 50years old. VF assessments were carried out using the Humphrey field analyzer (HFA) and Macular Integrity Assessment. Optic nerve head (ONH), retinal nerve fiber layer thickness (RNFLT), and ganglion cell inner-plexiform-layer thickness (GCIPLT) were measured by SD-OCT. Areas under the receiver operating characteristic curves (AUC) and sensitivities at 95% specificity were calculated for each parameter. HFA 24-2 had the largest AUC value among the functional parameters to differentiate POAG from control eyes [AUC: 0.950 (0.906-0.994), sensitivity at 95%:60]. HFA 24-2 showed a significantly better performance than the 10-2 test (p = 0.036). Among the SD-OCT structural parameters, minimum GCIPLT had the largest AUC value to differentiate POAG from control eyes [AUC: 0.952 (0.905-0.999), sensitivity at 95%:80]. In comparison of the functional and structural parameters, HFA 24-2 showed a significantly better performance than the 10-2 test (p = 0.036). In macular parameters, minimum GCPLT performed significantly better than HFA 10-2 (p = 0.015) in detecting POAG. There was no statistically significant difference between the comparative diagnostic performance of the RNFL, ONH, HFA, and MP (p > 0.05 for all comparisons). The structural and functional test results revealed that GCIPLT measurements had the highest diagnostic performance in detecting POAG. HFA 24-2 test performed better than 10-2 test in distinguishing glaucoma from healthy eyes. MP showed a similar performance with HFA 10-2 and may be considered a complementary diagnostic tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call