Abstract

This work describes the preparation, characterization, and micropatterning of MXene(Ti3C2)/TiO2 nanocomposite inks. MXene nanopowder was oxidized to form MXene/TiO2 nanocomposite powder using an air-aging method. The MXene/TiO2 inks were prepared using deionized water (H2O) as the solvent/dispersant and polyvinylpyrrolidone (PVP) as the surfactant. Various techniques were utilized to characterize the MXene/TiO2 nanocomposite material, and the BET results showed the preferential adsorption of butane of the MXene/TiO2 coating. Utilizing an ultrasonic dispersion printer in conjunction with a stencil mask, the MXene/TiO2 nanocomposite ink was successfully printed onto a 10mm*10mm gold-plated silicon substrate. This process achieved millimeter-level precision control, enabling the printing of fine lines with a width of 1μm and a spacing of 0.05mm. Furthermore, this technique demonstrated the ability to render various complex patterns, thus exemplifying the potential of MXene/TiO2 nanocomposite ink in the field of micro- and nano-manufacturing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call