Abstract

Lithographically patterned grids of photoresist, aluminum oxide, or gold on oxidized silicon substrates were used to partition supported lipid bilayers into micrometer-scale arrays of isolated fluid membrane corrals. Fluorescently labeled lipids were observed to diffuse freely within each membrane corral but were confined by the micropatterned barriers. The concentrations of fluorescent probe molecules in individual corrals were altered by selective photobleaching to create arrays of fluid membrane patches with differing compositions. Application of an electric field parallel to the surface induced steady-state concentration gradients of charged membrane components in the corrals. In addition to producing patches of membrane with continuously varying composition, these gradients provide an intrinsically parallel means of acquiring information about molecular properties such as the diffusion coefficient in individual corrals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call