Abstract

Wearable sweat sensor offers a promising means for noninvasive real-time health monitoring, but the efficient collection and accurate analysis of sweat remains challenging. One of the obstacles is to precisely modulate the surface wettability of the microfluidics to achieve efficient sweat collection. Here a facile initiated chemical vapor deposition (iCVD) method is presented to grow and pattern polymer nanocone arrays with distinct superwettability on polydimethylsiloxane microfluidics, which facilitate highly efficient sweat transportation and collection. The nanoarray is synthesized by manipulating monomer supersaturation during iCVD to induce controlled nucleation and preferential vertical growth of fluorinated polymer. Subsequent selective vapor deposition of a conformal hydrogel nanolayer results in superhydrophilic nanoarray floor and walls within the microchannel that provide a large capillary force and a superhydrophobic ceiling that drastically reduces flow friction, enabling rapid sweat transport along varied flow directions. A carbon/hydrogel/enzyme nanocomposite electrode is then fabricated by sequential deposition of highly porous carbon nanoparticles and hydrogel nanocoating to achieve sensitive and stable sweat detection. Further encapsulation of the assembled sweatsensing patch with superhydrophobic nanoarray imparts self-cleaning and water-proof capability. Finally, the sweat sensing patch demonstrates selective and sensitive glucose and lactate detection during the on-body test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.