Abstract

Micropatterning is a powerful technique to custom-make and precisely control the surface topography of materials, which is determinant for a better interaction with cells. A modification of conventional micropatterning is proposed here to fabricate textured film from stiff and sticky polymers such as poly(lactide(s)-co-glycolide(s)) (PLGA) without the use of supports or solvents. Micropatterned PLGA films with square pits varying in height and channels varying in width were made to study the influence of these topographical parameters on human fibroblasts proliferation, morphology, and alignment. With increasing the square pit height, the cell attachment efficiency increased. After 10 days of culture the micropatterned films supported a significantly higher cell proliferation than smooth films. In particular, cell growth was highly stimulated in 150-mum-wide channels. Fibroblasts were spread with a typical spindle shape in all the films. Cell spreading increased with increasing the textured dimensions. A random cell organization was found for smooth and for square pit samples, and a high alignment was observed along the 150-mum-wide channels. Smaller and bigger channels did not support substantial cell growth, suggesting a possible "recognition" mechanism of the cells for optimal organization. These findings could be useful in tissue engineering applications where higher proliferation rates and eventual random or unidimensional alignments of cells are desirable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.