Abstract

The efficient and safe manipulation of precision materials (such as thin and fragile wafers and glass substrates for flat panel displays) under complicated operating conditions with vacuum, high temperature, and low preload stress is an essential task for pan-semiconductor production lines. However, current manipulation approaches such as suction-based gripping (invalid under vacuum conditions) and mechanical clamping (stress concentration at the contact interfaces) are challenged to satisfy such complex requirements. Herein, fluororubber (FKM) is employed as an adhesive material to overcome such challenges due to its outstanding thermostability, availability under vacuum environments, and high adhesion at low contacting preloads. However, the adhesion of the FKM film decreases significantly with increasing temperature (decrease by 84.83% at 245 °C). Consequently, a micropatterned FKM-based dry adhesive (MFA) fabricated by laser etching is developed. The experimental results reveal that MFAs are efficient in restraining adhesion attenuation at high temperatures (minimum 15% decrease at 245 °C). The numerical analysis and in situ observations reveal the mechanism of the MFAs in restraining adhesion attenuation. The contamination-free and high adhesion at low contacting preload of MFAs can be of great interest in pan-semiconductor production lines that require complicated operating conditions on temperature, vacuum, and interface stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.