Abstract

Three-dimensional microparticle movements induced by laser beams with a funnel- and tubular pod-like structure, in the neighbourhood of the focal plane of an optical trapping setup, are experimentally studied. The funnel and pod beams constructed as coherent superpositions of helical Laguerre-Gaussian modes are synthesized by a computer generated hologram using a phase-only spatial light modulator. Particle tracking is achieved by in-line holography method which allows an accurate position measurement. It is experimentally demonstrated that the trapped particle follows different trajectories depending on the orbital angular momentum density of the beam. In particular applying the proposed pod beam the particle rotates in opposite directions during its movement in the optical trap. Possible applications of these single-beam traps for volumetric optical particle manipulation are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.