Abstract

The paper presents the experimental results of the investigation of microparticle emission from a Ba–Ti-based ferroelectric sample subjected to a driving pulse with a slow rise time and a fast fall time. It was found that the formation of incomplete discharges on the surface of the ferroelectric is accompanied by the emission of an intense positively charged microparticle flow. This microparticle flow (density, velocity distribution, momentum and average microparticle charge) was studied using electrical and optical diagnostics at different distances from the front surface of the ferroelectric sample and at several time delays with respect to the fast fall of the driving pulse. It was shown that microparticles are positively charged at about 6×10−15 C; they have an average size of about 5 μm, a density of about 7×104 cm−2 and an average velocity of about 6×103 cm s−2. The mechanism of the formation of these microparticles and the application of microparticle flows as a propellant for a small thruster are ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.