Abstract

Safe, minimally invasive, and cost-effective treatments are being sought to shortened orthodontic treatment time. Based on the well-known principle that orthodontic force triggers inflammatory pathways and osteoclast activity, we hypothesized that controlled micro-trauma in the form of micro-osteoperforations (MOPs) will amplify the expression of inflammatory markers that are normally expressed during orthodontic treatment and that this amplified response will accelerate both bone resorption and tooth movement. We tested our hypothesis in an animal model and in a human clinical trial. In adult rats, MOPs treatment significantly increased molar protraction with concomitant increase in inflammatory cytokine expression, osteoclastogenesis, and alveolar bone remodeling. Likewise, in human subjects, MOPs increased the rate of canine retraction concomitant with increased TNFα and IL-1β levels in gingival crevicular fluid. Moreover, MOPs treatment did not produce additional pain or discomfort in the patients tested. Our data supports our conclusion that MOPs offers a safe, minimally invasive, and easy mechanism to accelerate orthodontic tooth movement. Safe, minimally invasive, and cost-effective treatments are being sought to shortened orthodontic treatment time. Based on the well-known principle that orthodontic force triggers inflammatory pathways and osteoclast activity, we hypothesized that controlled micro-trauma in the form of micro-osteoperforations (MOPs) will amplify the expression of inflammatory markers that are normally expressed during orthodontic treatment and that this amplified response will accelerate both bone resorption and tooth movement. We tested our hypothesis in an animal model and in a human clinical trial. In adult rats, MOPs treatment significantly increased molar protraction with concomitant increase in inflammatory cytokine expression, osteoclastogenesis, and alveolar bone remodeling. Likewise, in human subjects, MOPs increased the rate of canine retraction concomitant with increased TNFα and IL-1β levels in gingival crevicular fluid. Moreover, MOPs treatment did not produce additional pain or discomfort in the patients tested. Our data supports our conclusion that MOPs offers a safe, minimally invasive, and easy mechanism to accelerate orthodontic tooth movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.