Abstract

Microorifice-based fusion makes use of electric field constriction to assure high-yield one-to-one fusion of selected cell pairs. The aim of this paper is to verify feasibility of high-yield cell fusion on a microfluidic chip. This paper also examines viability of the fusant created on the chip. We fabricated a microfluidic chip to fuse selected cell pairs and to study postfusion behavior. We used a self-forming meniscus-based fabrication process to create microorifice with a diameter of 2-10 microm on the vertical walls in a microfluidic channel. When 1 MHz was applied to electrodes located on both sides of the microorifice, dielectrophoretic force attracted the cells toward microorifice to form a cell pair. Once the cells get into contact, fusion pulse was applied. Real time imaging of cells during fusion and cytoplasmic dye transfer between cells indicated success of cell fusion. We found that when high frequency voltage for dielectrophoresis was swept from 1 MHz to 10 kHz in 100 micros, cell fusion was initiated. The effective electric field strength was 0.1-0.2 kV/cm. We analyzed viability by imaging fusant going into cell division phase after 48 h of incubation. We conclude that fabricated microfluidic chip is suitable for high-yield one-to-one fusion and creation of viable fusants. This technology should be a useful tool to study fusion phenomena and viability of fusants, as it allows imaging of the cells during and after the fusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.