Abstract

The composition of superficial deposits in urban environment and their importance in the development of the lithobiotic community of microorganisms has been investigated. Polyols, organic acids, mono- and disaccharides, as well as some amino acids, are the predominant low molecular weight organic components in superficial deposits, although the conditions on the stone surface are undoubtedly oligotrophic. Superficial deposits accumulate heavy metals, including Fe, Mn, Zn, Cu, Pb, and Cd, in surface sediments, among which the potentially toxic elements Zn, Cu, and Pb are accumulated in rather high concentrations. On model of Aspergillus niger as an example, it was shown micromycetes are resistant to heavy metals and retain their physiological activity when grown on this substrate. According to cultural studies, as well as metagenomic analysis, stress-resistant fungi and dark organotrophic bacteria are the main inhabitants of surface sediments. Probably, in the conditions of accumulation of superficial deposits on the stone, these organisms are the main inhabitants of the surface of the stone. With the development of more multi-species lithobiotic communities, they form the core of these communities. In the urban environment this type of primary colonization of the stone is likely realized.

Highlights

  • Introduction published maps and institutional affilHistorical monuments made of stone are an important component of the ubroecosystem of great cultural value

  • Modern study indicates a complex structure of subaerial biofilm (SAB) formed on the surface of monuments of cultural heritage made of stone

  • As a result of mycological studies using cultural methods, 37 species of micromycetes were identified in the superficial deposits of the monuments of the Museum necropolises (Table 1)

Read more

Summary

Introduction

Historical monuments made of stone are an important component of the ubroecosystem of great cultural value. The problem of preserving of cultural heritage is especially important if the monuments are exhibited in the open air [1–4]. Cultural heritage stone monuments are colonized by different organisms. Lithobiotic communities include organisms of several large taxa of fungi, algae, bacteria, mosses, and lichens. Microbial communities at the stone–air interface are called subaerial biofilms (SABs). Subaerial biofilms can be viewed as multicomponent open ecosystems sensitively tuned to the atmosphere and the stone substratum [5]. Modern study indicates a complex structure of subaerial biofilm (SAB) formed on the surface of monuments of cultural heritage made of stone. Their research requires a variety of approaches, including studies of SAB functional features, taxonomic information, interactions with substrate, and studies of microbial responses to environmental stressors.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call